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RINGS RADICAL OVER SUBRINGS 

BY 

B. FELZENSZWALB*'** 

ABSTRACT 

Let R be a ring with a subring A such that a power of every element of R lies in 
A. The following results are proved: If R has no nonzero nil right ideals, 
neither does A ; if moreover R is prime, A is also prime. If R is semiprime 
Goldie, so is A. If A has no nonzero nilpotent elements, then the nilpotent 
elements of R form an ideal. Finally if R has no nil right ideals and A is Goldie, 
then R is Goldie. 

In wha t  fol lows R will d e n o t e  an  associa t ive  ring, not  necessar i ly  with 1, and  A 

will a lways  d e n o t e  a subr ing  of R .  Fo l l owing  Fa i th  [1], we say R is A-radical if 

for  each  r E R the re  exists  n = n ( r )  _-> 1 such that  r" E A .  In this p a p e r  we s tudy  

the  r e l a t ionsh ip  b e t w e e n  the  p r o p e r t i e s  of  R and  A when  R is A - r a d i c a l .  The  

first sec t ion  dea ls  with some  resul ts  of  i n d e p e n d e n t  in teres t .  In Sect ion  2 we 

p lace  cond i t ions  on R and  show that  the  same  cond i t ions  are  forced  on A .  

F ina l ly ,  in Sec t ion  3 we show that  by  p lac ing  cond i t ions  on A these  are  fo rced  on  

R p r o v i d e d  R is wi thou t  n o n z e r o  nil idea ls  (except  T h e o r e m  7 w h e r e  we r equ i r e  

R to be  wi thou t  nonze ro  nil r ight  ideals) .  F o r  a good  cross -sec t ion  of the  resul ts  

o b t a i n e d  in this k ind  of  s tudy one  can look  in [1], [4], [6] and  [7]. 

The  fo l lowing fact will be  used  wi thou t  fu r the r  men t ion :  if R is A - r a d i c a l  and  

r l , . . . , r m E R ,  then  the re  exists  k = k ( r l , . . . , r m ) = l  such that  r~ ~ E A , i =  

1, . . . ,  m .  
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1. Preliminary results 

We begin with 

LEMMA 1. Let  R be a ring with no nonzero nil right ideals. Suppose a E R and 

ax"tX)a = O, n (x)>= 1, all x ~ R .  Then  a = O. 

PROOF. Clearly a is nilpotent.  If a 2 ~  0 and k is minimal such that ak = 0 ,  

then a k-1 satisfies the same hypothesis  as a and (ak- l )  2=  0 .  Hence  we may 

assume a 2 =  0.  Let  r E R with r 2=  0 ;  we claim that  a m  = 0.  In fact, if x E R 

there exists n _-_ 1 such that  a ( (axar )+  r)"a = 0. Since r 2 = a 2 = 0 ,  if n = 1 we 

get a m  = 0 ; if n > 1, then ar (axar)  "-~ a = 0 .  In any case we have (arax)" = O. 

Thus a f a R  is a nil r ight ideal and consequent ly ,  f rom the hypothesis  on 

R ,  ara = O . 

Let  r, s E R with rs = 0.  Then  (sxr) 2 = 0 for every x E R and so, by the above,  

a (sxr) a = 0 for  every x E R .  Thus,  since R is semiprime,  ms  = O. 

Let  x E R and let n _---1 such that a x " a  = 0 ;  we show that (ax)  "+~=0. If 

n = l  this is clear. If n > l ,  (ax )  ( x " - ~ a ) = a x " a = O  and by what  we 

deduced  before  this implies ( a x )  a (x"-I  a )  = 0 ; cont inuing in this way we obtain  

(ax ) "a  = 0 and so (ax )  "+~ = 0.  In o ther  words,  aR  is a nil right ideal. Therefore ,  

by our  hypothesis  on R ,  we must  have a = 0 .  

THEOREM 1. Let  R be a prime ring with no nonzero nil right ideals. Suppose 

a , b ~ R  and a x " t ' ) b = O ,  n ( x ) _ - > l ,  all x ~ R .  Then a =O or b = O .  

PROOF. Assume  b # 0 and fix for  each x E R an integer n (x) => 1 such that  

ax"tX)b = 0.  Then  p = {y E R l a x " t ' ) y  = 0 ,  all x ~ R}  is a nonze ro  right ideal 

of R and by L e m m a  1, pa = 0.  Thus,  since R is pr ime and p # 0 ,  a = 0 .  

Since pr ime (nontrivial) nil rings exist, T h e o r e m  1 does not  remain  valid if one  

just assumes R to be a pr ime ring; we believe however  that the result remains  

valid if one  replaces the assumpt ion  "with no nonzero  nil right ideals" by its 

two-sided version "with no nonzero  nil ideals".  

REMARK 1. Let  R be a pr ime ring with nontrivial  center.  Suppose  a, b E R 

and ax "~x) b = 0 ,  n (x)_-> 1, all x E R .  If char  R = 0 or  c h a r R  = p # 0  where  

p s  then a = 0 o r  b = 0 .  

PROOF. Since a nonzero  e lement  in the center  of a pr ime ring is not  a zero 

divisor we clearly have ab = 0.  Let  r U R with r 2=  0 .  If c ~ 0  is a central  

e lement  of R there exists n => 1 such that  a (c + r)"b = 0 where  if c h a r R  = 

p ~  0 ,  p ,1" n.  Since r 2 = 0 and c is not  a zero  divisor it follows that  arb = O. 
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Let r, s E R with rs = 0. Then, since (sxr) 2= 0 for every x E R,  we get 

asRrb = 0. But R is prime so as = 0 or rb = O. 

Now if x ~ R ,  a x " b = O  for a suitable n. Pick k_-->l minimal such that 

ax~b = 0. If k > 1, by what we have deduced above, 0 = ax~b = (ax~-~)(xb) 

implies axb = 0 or ax k-1 b = 0. This contradicts the minimal nature of k. Thus 

aRb = 0, and, since R is prime, a = 0 or b = 0. 

For later reference we state the well known 

THEOREM (Levitzki [3, lemma 1.1]). Let R be a ring and 0 ~ p a nil right ideal 

of R. Suppose that given a E p, a" = 0 for a fixed integer n ; then R has a nonzero 

nilpotent ideal. 

Note that using Levitzki's result we can drop the assumption "with no nonzero 

nil right ideals" in Theorem 1 if the integers n (x) have a finite maximum as x 

ranges over R.  

2. Going down 

A natural question is: "If  R has no nonzero nil ideals and R is A-radical,  is A 

without nonzero nil ideals?" The next result gives us an affirmative answer to 

this question modulo the Koethe conjecture. 

THEOREM 2. I f  R has no nonzero nil right ideals and R is A-radical,  then A 

has no nonzero nil right ideals. 

PROOF. Suppose p ~ 0 is a nil right ideal of A .  Let r E R with r 2 = 0. If a E p 

there exists n ->_ 2 such that (ar)" and (ar + r)" are in A .  Thus r (ar) "-1E A and 

so ar (ar) "-1 = (ar)" E p ; hence ar is nilpotent. Since (rxr) 2 = 0 for every x E R,  

we have rxra nilpotent for every x E R.  Hence rarR is nil and by hypothesis this 

implies rar= 0. In short, if r E R and r 2= 0 then rpr = O. 

By Lemma 1, A is semiprime and so by Levitzki's theorem there exists a E p 

with ak = 0, a k - l ~ 0 ,  and k _->4. Now, since k =>4, (ak-5)2= 0 and conse- 

quently a k-Zp a k-2 = 0. Thus a k-2/9 is a nilpotent right ideal of A .  Since A is 

semiprime we must have a k-~p = 0 and so a ~-1= 0, a contradiction. 

When R has no nonzero nil ideals and R is A-radical, every nonzero ideal of 

R intersects A nontriviaily. So, in this situation it is clear that if A is prime, R is 

also prime. 

Combining Theorems 1 and 2 we have 

THEOREM 3. I f  R is prime with no nonzero nil right ideals and R is A-radical,  

then A is prime with no nonzero nil right ideals. 
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We continue with 

LEMMA 2. Suppose R has no nonzero nil right ideals and R is A-radical. I f  

al, a2~ A and a i A n  a2A = O, then a iR  n a2R = O. 

PROOF. Let al, a2E A with a~A n a2A = 0. Consider the right ideal of 

A , p = a ~ R n a 2 A .  Let x E p ,  s a y x = a ~ r ~ = a 2 r 2 ,  r l ~ R  a n d r 2 ~ A ,  and le t  

n _-> 1 such that (rl al)" ~ A.  Since al, r2 E A we have 

a, (r, al)" = (a, rl)'al = (a2 r2)"a, ~ a lA  O a2A = 0 ; 

SO X"+l = ( a l  r l )  n+l = 0. Thus t9 is nil and consequently by Theorem 2, since R 

has no nonzero nil right ideals, /9 = a i r  n a2A = O. 

Let x E a iR  n a2R, say x = air1 = a2r2, and let n -> 1 such that (r2 a2)" E A .  

Then ( a l r l ) ' a 2 = ( a 2 r 2 ) ' a 2 = a 2 ( r 2 a 2 ) ' E a l R n a 2 A  = 0  and so x"§  

(a2 r2) "§  0. Thus a~R n a2R is nil and by hypothesis we must have a~R n 

a2R = O. 

Recall that a left ideal h of a ring R is said to be essential if it intersects every 

nonzero left ideal of R nontrivially. 

REMARK 2. Suppose R has no nonzero nil right ideals, R is A-radical,  and h 

is an essential left ideal of R.  Then A n A is an essential left ideal of A .  

PROOF. Let a f 0 in A .  Then ~t n Ra ~ 0 and there exists b in A n Ra ,  b not 

nilpotent. Let n => 1 such that b" E A.  Since b"*l f 0 is in Rb"  n Ra ,  by the left 

analogue of Lemma 2, Ab"  O A a  ~ O. In particular ( A n  A ) n  A a ~  O. This 

being true for every a f 0 in A ,  we conclude tharA n A is an essential left ideal 

of A .  

If S C R is a subset and r ~ R let Is (r) = {x ~ S I xr = 0}, the left annihilator 

of r in S. The left singular ideal of R is Z (R)  = {r E R I IR (r) is essential}, seen 

to be an ideal of R.  Let Z (A)  denote the left singular ideal of the subring A of 

R.  Since for r E R ,  lA (r) = IR ( r ) n  A ,  we have the 

COROLLARY. If R has no nonzero nil right ideals and R is A-radical, then 

Z ( A )  = Z ( R ) A  A.  

In [7] Rowen conjectured that if R is a prime left Goldie ring and R is 

A-radical, then either R is commutative or R and A are left orders in the same 

simple artinian rings. We conclude this section with a step in this direction. We 

will follow the arguments of Procesi and Small of Goldie's theorem for 

semiprime rings [3, chap. 4]. 
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REMARK 3. Suppose R is a semiprime left Goldie ring and R is A-radical. If 

A is an essential left ideal of A ,  then h contains a regular element. 

PROOF. Assume first R is a prime left Goldie ring. Since a semiprime left 

Goldie ring has no nonzero nil right ideals [5], by Theorem 3 A is prime. Also, as 

a subring of R, A inherits the ascending and descending chain conditions on left 

annihilators. Choose a E A so that IA (a) is minimal. Suppose lA (a) fi 0. Then 

Ra is not essential in R and so clearly A a  is not essential in A .  Let J f i  0 be a 

left ideal of A such that A a  n J - - 0 .  Since A is essential, A n J f i  0 hence we 

may assume J C A .  If x E J ,  r E I A ( a + x ) ,  r a = - r x E A a n J = O  thus 

r E  IA ( a )O  IA (X). By the minimality of IA (a) we get IA (a)C/A (X) for all 

x E J ;  thus l A ( a ) J - - O .  Since I A ( a ) ~ 0 ,  J ~ 0  and A is prime, this is a 

contradiction. Hence IA ( a ) =  0 and since R has no nonzero nil right ideals 

lR (a) = 0. Thus, since R is prime Goldie, a is regular in R .  

Now, let R be a semiprime left Goldie ring and let $1 ~) . . .  ~) S, be a maximal 

direct sum of minimal annihilator ideals. Each S~ is a prime left Goldie ring [cf. 3, 

lemma 4.17] S~ n A-radical and clearly A n S~ is an essential left ideal of S~ n A .  

Thus, each )t n S, contains an element a, regular in S,. If a = a, + ... + a , ,  then 

[cf. 3, lemma 4.18] a is regular in R.  

THEOREM 4. I f  R is a semiprime left Goldie ring and R is A-radical, then A is 

a semiprime left Goldie ring. 

PROOF. By [5] R has no nonzero nil right ideals, so by Lemma 1 A is 

semiprime. Let a E A regular and b E A .  Then, since R has no nonzero nil 

right ideals, a is regular in R and consequently Ra is essential in R.  By Lemma 

2 A a  is essential in A ; as is easy to see, )t = {x E A  I xb E A a }  is also an 

essential left ideal of A.  By the preceding discussion )t contains a regular 

element c. Thus cb = da, some d E A .  Hence A satisfies the left Ore 

conditions, so has a ring of left quotients Q (A) .  

Let I F  0 be a left ideal of Q (A) .  Then by Zorn's lemma there exists a left 

ideal K in A such that ( I A A ) ~ ) K  is essential in A.  Thus, as before, 

(I O A ) �9 K contains a regular,element, therefore Q (A) -- I ~) Q ( A ) K  and if 

1 is the unit element of Q (A) ,  1 = e + f where e E I, f E Q (A)K.  It is easy to 

see that I -- Ie = Q ( A ) e .  Thus every nonzero left ideal of Q (A) is principal, 

generated by an idempotent. Thus Q (A) is semiprime and every left ideal of 

Q (A) is a left annihilator. 

Now, R is a left order in a semisimple (left) artinian ring Q ( R ) .  By 

universality we may assume Q (A) C Q (R) .  Thus Q (A) satisfies the descend- 
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ing chain condition of left annihilators, so on all left ideals. Since Q (A)  is 

semiprime, Q (A)  is semisimple (left) artinian. Therefore  A is semiprime (left) 

Goldie. 

3. Going up 

The hypercenter, T, of a ring R is defined by T = 

{t E R [ tx" = x ~t, n = n (x t) >= 1, all x ~ R}.  Herstein [4] has shown that if R is 

a ring with no nonzero nil ideals then T = Z ,  the center of R.  This result enables 

us to avoid the K6ethe conjecture in Theorem 6. Right now we use it in the 

following 

THEOREM 5. Suppose R is 2-torsion free and is A-radical.  I r A  has no nonzero 

nil right ideals, then, N (R ), the upper nil radical of R ,  contains every nil 

one-sided ideal of R .  

PROOF. Since R / N  (R )  is radical over A + N ( R ) / A  = A / A  fq N (R )  ~ A ,  

we may assume N ( R ) - - O ,  and, we have to show R has no nonzero nil 

one-sided ideals. 

Suppose p #  0 is a nil right ideal of R.  Since R is semiprime, by Levitzki's 

theorem there exists x E p  with x k = 0 , x k - i # 0 ,  and k_->6. For k odd, 

3(k  - 1 ) / 2 = >  k, and (x~k-1)/2) 3= 0 ; f o r  k even, 3(k - 2 ) / 2 ~  k, and (x~k-2)/2) 3= 

0. Thus we may assume x 3 = 0  and x 2 # 0 .  If r E R ,  we can find an integer n 

such that 

(1) r" E A 

(2) ( l + x ) r " ( 1 - x + x 2 ) = ( ( l + x ) r ( 1 - x + x 2 ) )  ~ E A  

(3) ( 1 - x ) r ~ ( l + x + x 2 ) E A  

(4) ( 1 - x + x 2 ) r ~ ( l + x ) E A  

(5) ( l + x + x 2 ) r ~ ( 1 - x ) E A .  

Now, from (1), (2), and (3), we get 2 ( - x r ~ x  + r " x 2 ) E A  fq Rx  = 0 ;  similarly 

(1), (4), and (5) give us 2 ( - xr"x + x 2 r") E A M xR = 0 (for if A has no nonzero 

nil right ideals, then, clearly, it has no nonzero nil left ideals). By hypothesis we 

must have x 2r n = xr~x = r~x 2. In other  words, x 2 ~  hypercenter  of R.  Since 

N ( R )  = O, x 2 is a central element. But the center of a semiprime ring has no 

nonzero nilpotent elements, so x 2= 0, a contradiction. 

We believe the above result is true with no assumptions on torsion. 

THEOREM 6. Suppose R has no nonzero nil ideals and R is A-radical.  Then if 

A has no nonzero nilpotent elements, R has no nonzero nilpotent elements. 
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PROOF. We begin by showing R has no nonzero nil right ideals. Assume 

p ~  0 is a nil right ideal of R .  Let a ~  0 in p with a 2 = 0. If r E R,  then, for some 

n , r "  and ( ( l + a ) r ( 1 - a ) ) "  are in A .  But ( ( l + a ) r ( 1 - a ) ) ' =  

( l + a ) r " ( 1 - a ) = r " + a r  " - r " a - a r " a ,  and so b = a r ' - r " a - a r " a E A .  

Now, b 2= (ar")2+(r"a)  2 - a r 2 " a ,  and by induction we get b 2' = 

(ar")2' + (r" a)2' + ac, a for some c, E R .  Since a E p, at" and r" a are nilpotent, 

so there exists to such that ( a t " )  2'o= ( r"a)  2'~ 0; thus b 2~*~= (ac,oa) ~ = 0, and, 

from the hypothesis on A ,  we get b = 0 .  Thus 0 = h a = a t " a ,  so 0 = b =  

ar" - r"a.  It follows that a E hypercenter  of R .  Since R has no nonzero nil 

ideals, a is a central element. But R is semiprime and a is nilpotent so we must 

have a = 0, a contradiction. 

Assume now a E R with a 2= 0. If r E R ,  (ar)" and ((1 + a ) ( a r ) ( 1 -  a))" are 

in A for a suitable n. But ( ( l + a ) ( a r ) ( 1 - a ) ) " = ( l + a ) ( a r ) " ( 1 - a ) =  

(at)" - (ar)"a, so (ar)"a = b E A .  Since b 2 = 0 and A has no nonzero nilpotent 

elements,  b = 0. Hence (ar)  "§ 0. This shows that aR is nil right ideal and 

consequently a = 0. Therefore  R has no nonzero nilpotent elements. 

An immediate  consequence, which is in fact equivalent to Theorem 6 is: " I f  R 

is A-radical  and A has no nonzero nilpotent elements, then the nilpotent 

elements  of R form an ideal" (Proof: Consider N (R)  = upper  nil radical of R 

and R = R / N  ( R ) .  R is fi~-radical, where .4 = A + N ( R ) / N  ( R ) ~  A / A  fq 

N (R)  ~ A has no nonzero nilpotent elements. Thus /~  has no nonzero nilpotent 

elements, which is to say that every nilpotent element of R lies in N ( R ) ,  i.e., 

N (R)  = {nilpotent elements of R }.) 

COROLLARY (Rowen). Suppose R has no nonzero nil ideals, R is A-radical, 

and A is a domain. Then R is a domain. 

PROOF. By an earlier observation, under these hypothesis R is a prime. 

Moreover,  by Theorem 6, R has no nonzero nilpotent elements. It follows that 

R is a domain. 

Goldie [2] characterized left Goldie rings as those having left singular ideal 

zero and not containing infinite direct sums of left ideals. This characterization 

and the Corollary to Lemma 2 give us our last result. 

THEOREM 7. If R has no nonzero nil right ideals, R is A -radical, and A is left 

Goldie, then R is left Goldie. 

Added  in proof. Herstein has pointed out to us the following: 
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REMARK. Suppose R has no nonze ro  nil ideals and 2R = 0. If R is A- rad ica l  

and A has no nonzero  nil right ideals then R has no nonzero  nil right ideals. 

In fact, suppose p ~ 0 nil right ideal of  R. As in T h e o r e m  5 we can find x E p 

with x 3 = 0  and x 2 ~ 0 .  If a E A  let n_-_l such that ( l + x ) a n ( l + x + x 2 ) ,  

( l + x + x 2 ) a n ( l + x )  and ( l + x 2 ) a n ( l + x  2) are in A. Then  a l =  

xa"x2 § x2a"x § x 2 a n x 2 ~ A  f')p = 0 ;  hence  O= xa~= x2anx 2 and, since 

(l + x2)a~ (l + x2)E A,  x2a ~ + anx2 E A.  

If b ~ A let c = (x2a ~ + a~x2)b. Then  x2c = 0. But  proceeding  as above  we 

have x2c m + cmx2E A for  some m _-> 1. Hence  c ' x 2 ~  A fq Rx  = 0. Now, c "§ = 

cm(x2a ~ + anx2)b = c 'a*x2b E Rx2b so c r'§ and consequent ly  c, is nilpotent.  

Thus (x2a~ + a nx2)A is a nil right ideal of  A. By hypothesis  we must  have 

x 2 a ~ §  2- -0 .  It follows that  x 2 E hypercen te r  of R and since R has no 

nonzero  nil ideals x 2 E center  of  R. But  R is semipr ime and x 2 is ni lpotent  so 

x 2=  0, a contradict ion.  

We can now sharply improve  T h e o r e m  5 by removing  the assumpt ion of no 

2-torsion. 

THEOREM 5'. If R is A-radical  and A has no nonzero nil right ideals then 

N ( R  ), the upper nil radical of R, contains every nil one-sided ideal of R. 

PROOF. By going to R / N ( R )  we may assume N ( R )  = 0, and we have to show 

R has no nonze ro  nil one-s ided ideals. Consider  the ideal U -- {x E R [2kx -- 0 

for  some k _-> 1}. We  have that  R / U  is A / A  f) U-radical ,  and as it is easy to see 

R / U  is 2-torsion free with no nonze ro  nil ideals, and A / A  N U has no nonzero  

nil right ideals. By T h e o r e m  5 it follows that  R / U  has no nonzero  nil right ideals. 

Clearly the result now will follow if we show U has no nonzero  nil right ideals. 

But  U is A fq U-radical ,  2 U  = 0 (for 2 U  is a nil ideal of R) ,  and U has no 

nonzero  nil ideals; m o r e o v e r  since A fq U is an ideal of A,  A fq U has no 

nonzero  nil right ideals. Therefore ,  by the preceding remark  U has no nonzero  

nil right ideals. 

No te  that T h e o r e m  6 follows now immediately.  Note  also that we have 

THEOREM 7'. I f  R has no nonzero nil ideals, R is A-radical, and A is 

semiprime left Goldie, then R is left Goldie. 
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